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Abstract 

This report describes the development and applications of multiblock/ 

multizone and adaptive grid methodologies for solving the three-dimensional 

simplified Navier-Stokes equations. The program was initiated in 1987 focusing on 

developing a three-dimensional plume code to simulate the aerodynamic 

characteristics of a jet. issuing from nonaxisymmetric noizles. Previously, Abdol- 

Hamid et. al. introduced the single zone version of the present code (PAJ33D-vl) where 

the parabolized and simplified Navier-Stokes equations were solved. The code was 

tested and compared with the experimental data for axisymmetric underexpanded and 

overexpanded supersonic jet flows and transonic flow around a nonaxisymmetric 

afterbody. 

In the present report, adaptive grid and multiblock/multizone approaches are 

introduced and applied to external and internal flow problems. These new 

implementations increase the capabilities and flexibility of the PAE33D code in solving 

flow problems associated with complex geometry. 
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1. Introduction 

A single block solver can be used efficiently to simulate simple aerodynamic 

configurations. Among various methods offered by many researchers, Abdol-Hamid 

*2*3 introduced the single block version of PAE33D code to simulate underexpanded and 

overexpanded supersonic jets issued from round and rectangular nozzles. Abdol-Hamid 

and Compton4 used the PAE33D code to simulate external flow around a nonaxisymmetric 

nozzle at a Mach number of 1.2. Pao and Abdol-Hamid5 used the single block with 

adaptive grid to simulate underexpanded supersonic jet flows issued from round, 

square, and elliptic nomles. 

As better computational methods and powerful computers are available in 

recent years, computational fluid dynamics (CFI)) has become one of the important 

tools in improving aircraft design (6.7). Until recently. the use of CFD was limited to 

simple geometries. Future aircraft (fighter or transport) will have very complex 

geometries and are difficult to handle with a single zone structured grid. Either 

unstructured or multiblock/multizone structured grids are attractive approaches for 

solving viscous flow problems with complex configurations. Even though the 

unstructured grid is much easier to generate, it requires more computational time and 

memory for solving the Navier-Stokes equations per grid point. With the capability of 

the supercomputers of today, the multiblock/multizone approach is a flexible method 

which can handle very complex configurations. 

The advantages in using the multiblock/multizone approach are: 

1. Simple grid generation for complex configurations. 

2. Flexibility to use a different CFD approach for each block: 

a. Numerical technique (space marching algorithms for supersonic flows 

and time-dependent algorithms for subsonic and separated flows). 

b. Different topology for each block (polar, Cartesian. etc.). 



c. Adaptive grid in regions where the dependent variables and their 

gradients change their strength and location. 

3. Less memory as each zone is solved independently with appropriate 

boundary conditions. 

This report describes the capabilities of an improved version of the PAE3 3D-vl code 

reported in references 1 to 4. This improved code, named PAB 3D-v2. includes options 

for three different numerical schemes to solve the simplified Navier-Stokes equations. 

The three schemes are: the flux-vector-splitting scheme of van Lee?, the flux- 

difference-splitting scheme of Roeg and a modified Roe scheme (space marching 

~ c h e m e ) ~ ~ ~ .  Four dflerent turbulence model options are also included in PAB 3D-v2. 

The first of the four. the Baldwin-Lomax10 model, is a two-layer algebraic model which 

follows the pattern adopted by Cebecil 

boundary layer thickness. The second, the Johnson and King model12 as extended to 

three-dimensional flows by Abid13 and Abid el. al. 14, is a two-layer hybrid eddy- 

viscosity Reynolds shear-stress model in which a simplified ordinary differential 

equation for the maximum Reynolds shear-stress is solved. The third, the Goldberg 

model15 as modified by Goldberg and Chakravarthy16. can be considered as a three- 

layer turbulence model where the third layer is used to simulate the separated regions of 

the flow. The last is the mixing length turbulence model2 with the option of including a 

compressibility correction factor introduced by Cheuch 7. Two diflerent external and 

one internal flow problems are used to test the various code capabilities. 

but  avoids the necessity of determining the 

One important problem for CFD applications is the prediction of the shock-cell 

structure of underexpanded and overexpanded supersonic jet flows. Understanding the 

eITect of shock-cell structure and interaction of a supersonic jet with the external 

stream is essential for the design of future aircraft. Also, the no;.zle exit geometry plays 

an important role in designing fighter aircraft for maximum maneuverability over a 

wide range of Mach numbers18-22. Developing an efficient computational technique is 
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important to fully understand the flow characteristics of these no7zles. At the present 

time, there are few codes available to predict the aerodynamics of three-dimensional 

shock containing jets. Wolf et. al. developed a three-dimensional code (SCIP3D23) for 

analyzing the propulsive jet mixing problem. Anderson and Barber24 also developed a 

three-dimensional Parabolized Navier-Stokes procedure for calculating the heated 

subsonic and supersonic jet. This code was used to simulate the jet mixing rate for 

axisymmetric. rectangular and splayed noizles operated at design conditions. Abdol- 

Hamid2v3v4 introduced a space marching scheme, which is based on modifying the Roe's 

scheme, to get an accurate solution to the simplified Navier-Stokes equations for 

supersonic flows with a single time sweep. This scheme was successfully used to 

simulate underexpanded supersonic round and square jet flow p r o b l e n ~ s ~ . ~ .  Pao and 

Abdol-Hamid5 introduced a new adaptive grid for analyzing the aerodynamic of shock- 

containing single jets. They used this technique to simulate round, square. and elliptic 

jet flows. The adaptive grid is used to accurately describe the shear layer and detect and 

track the movement ofthe shock system for underexpanded supersonic jets. In the 

present report, adaptive grid and multiblock capabilities included in PAB 3D-v2 are 

utilized to simulate round, square, and elliptic supersonic jet flows. 

Another group of underexpanded supersonic jet flow which involving the 

internal and external flow regions for a special family of jet nozzle is analyzed in this 

report. These examples are designed for showing the flexibility of the PAB3D-v2 code in 

handling mixed boundary conditions over a block interface. The nozzle configuration 

can be described as a ctrcular pipe section followed by five equally spaced tabs. Each tab 

is simply the extension of an arc segment of the circular pipe for a certain length in the 

downstream direction. Each arc segment. representing the width of the tab. is 1 / 10 of 

the full circle. For this family of configurations, only two grid blocks are needed for 

calculations using the PAl33D-v2 code. It is estimated that at least 30 percent of 

computer resources are saved by such structural simplicity when compared to typical 
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multiblock codes. Results of analysis using PAI33D-v2 for these nomles are 

qualitatively similar to the experimental results obtained by Wlezien et a144 for 

nozles with 1. 2. 4 and 8 tabs. In general. the results show that the tab nozzle 

configuration allows rapidly establishment of a pressure equilibrium between the 

underexpanded jet flow and the ambient free stream. The jet plume is found to have a 

higher spreading rate and a lower core flow Mach number as compared to a similarly 

underexpanded supersonic jet issuing from a circular nozzle without tabs. 

Finally, PAB3D-v2 was used to predict the aerodynamics of an afterbody at 

transonic speed. In fighter development programs, a great amount of effort is spent in 

analyzing the afterbody flowfield to efficiently integrate the nozzle and airframe. For 

analyzing this complex flowfield, computational fluid dynamics is becoming 

increasingly useful. Previous applications of computalional fluid dynamics to the 

afterbody problem include numerical techniques ranging from panel methods to 

Navier-Stokes  solver^^^-^^. Abdol-Hamid and Compton4 used four different 

numerical algorithms and three different turbulence models to solve the three- 

dimensional Navier-Stokes equations for supersonic flow over a nonaxisymmetric 

nozzle. Three of the algorithms were contained in the PAI33D-vl and P A E ~ ~ D - V ~ ~ - ~  and 

the other in the CFL3D code31.34-36. In the present report. the multiblock/multizone 

approach in PAE3 3D-v2 is utilized to simulate the flow over this nonaxisymmetric 

n07jsk at a Mach number of 0.8 using a coarse grid. Also, the perfomiance of the three 

turbulence models using a fine grid topology in simulating supersonic flow are 

compared with experimental data. 

2. Governing Eauations 

The governing equations under consideration here are the Reynolds-averaged 

Simplified Navier-Stokes equations obtained by neglecting all streamwise derivatives, 

a/%. of the viscous terms. The resulting simplified Navier-Stokes equations are 

written in generalized coordinates and conservation form as  

4 



where, 

P PU 
PU pu2 + P 

Q= pv . E= puv 
PW PUW 
e (e + P)u 

PV PW 
PUV PUW 

F =  $+P , G= pvw 
PVW pw2 + P 
(e + P)v (e + Plw 

In these equations, p is the density, u. v. and w are the components of the velocity 

in the x, y, z directions, respectively, and e is the total internal energy per unit volume. 

The pressure, P, is related to the energy by 

Y a T  - K - + UT,, + V T  xy +WT x% 
P ,  ax 
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0 

rXY 
Gv= '5yy 

TY Z 
Y a T  - K -+ UT x,, + uTYy +WT 

p r  a Y  

Y aT - K-+ UT, +VT yz + wz zz 
P, as 

where 

5 = ((x.y.z.t) = Streamwise (marching) direction 

q = q(x.y.z.t) = Normal direction 

c = c(x.y,z.t) = Spanwise or circumferential direction 

J is the Jacobian of the transformation given by 

where. 

P = PL + PT 
P = P L  

afterbody calculations 
jet and nozzle calculations 

p~ and p~ are the laminar and turbulent viscosity respectively. In the present 

investigation. the turbulent viscosity is evaluated using two algebraic turbulence 

models which are described subsequently. 
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The Parabolized Navier-Stokes (PNS) equations are obtained from the 

governing equations when the unsteady terms are omitted and the following 

assumptions are enforced: 

1. The streamwise velocity component is everywhere greater 
than zero. 

2. The pressure gradient term in the streamwise direction aP/% 
is either omitted or treated with other techniques to avoid a 
complex eigenvalue. 

In the present investigation. the technique of Vigneron et. a1.37 is adopted to 

suppress the departure solutions associated with the elliptic behavior of the equations. 

Vigneron et. a1.37 show that PNS equations are hyperbolic-parabolic provided that the 

streamwise convected flw vector is replaced by 

E=[pU.puU+ S, w ~ . p v U  + ~ , w ~ . p w U +  S,wp.(e +P)C] 

where 

w =  1 MC21 

(7) 

and, u is a safely faclor to account for the nonlinearity of the governing equations. A 

value of 0.95 is used in the present calculations. 

3. Turbulence Model2 

The Baldwin-Lorna, Johnson-King, and Goldberg I irbi lence models (for wall 

boundary problems) and mixing length turbulence models (for shear flow problems) are 

briefly described in this section. 
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3.1 Baldwin-Lomax Model 

The Baldwin-Lomax10 model is an algebraic two-layer turbulence model which 

follows the pattern adopted by Cebecil l. The model is developed for thin-layer, two- 

and three-dimensional calculations. The turbulent viscosity is evaluated as follows: 

where q is the normal distance from the afterbody surface and qcros is the smallest 
value of q at which values of (pt)i and are equal. For the inner-layer: 

(Pt)i = I at (8) 

where, I = lq [l -exp (- q+/A+)] 

and, k = 0.4, A+ = 26 

where T~ = wall shear stress 

1 is the magnitude of the vorticity. 

There are two dflerent ways to calculate I w I : the three-dimensional form: 

and the thin-layer approximation 

For the outer-layer: 

bt)o  = Keep P Fwake Fkleb (h) 

where. Qp = 1.6. k = 0.018 

qmax Fniax 

cw kV m axu / Fmax 
Fwake = the smaller of 

u = U2 +V2 + W2* cwk= 0.25 
q m a  is the q location corresponded to the maximum value (Fnla)  where F is 
calculated by 
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CHeb = 0.3 

3.2 Johnson-King Model 

The Johnson-King modella* l3 is a two-layer hybrid eddy-viscosity/Reynolds- 

shear-stress model. A simplified ordinary differential equation for the maximum 

Reynolds shear stress (7,) is used to deterniine the change in the turbulent viscosity in 

the streamwise direction. The initial values of the Reynolds shear stress (along each 

line normal to the afterbody) have to be evaluated with some other approaches. The 

original model was developed for 2-D flows in which a 1-D equation for 'Tm is to be 

solved. Abidlg and Abid et. al. l4 extended the Johnson-King niodel12 for the 

application to 3-D flows. In the Johnson-King model. the turbulent viscosity is 

expressed as 

T~~ = maximum Reynolds shear stress/densily 

9 



The outer eddy viscosity is the same as the one used for the Baldwin-Lomax model 

(equation 11) but multiplied by a correction factor Q. However, k takes a value of 0 . 0 1 6 8  

as suggested by Abid et. al. 14. The Q factor provides a link between the eddy viscosity 

evaluated by equation (16)  and Tm. Tm is evaluated by solving the 2-D ordinary 

dirrerential equation, which can be written in the following finite volume form: 

Wrn 
5 u, r, 6 g+-6 g + r = o  

where 

U, =Rxum +R,,v, +R,w,, 

W, =Txum +TYv, +T,w, 

where a1 = 0.25. CD = 0.5 

Z, = min (0.4 qm. 0.096) 

g=z ,  

First. the Baldwin-Lomax mode is used to s u p ~ ; . j  the initial values for Tnl at each 

streamwise location, and Q is set to 1. Then, at the following time steps. equation (17)  is 

solved for Tm using an upwind-scheme, and o is updated as follows 

-1 /2 

i 

In the region where Q is less than unity. the value of (1 - o"1 (equation 14) is set to zero. 

3.3. Goldberg Modification 

G01dber-g~~ and Goldberg and Chakravarthyl6 introduced a modification for 

boundary layer turbulence models, which is designed to simulate the separation bubble 

1 0  
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in the flow. The modification consists of a simple formula for the distribution of the 

eddy viscosity within the separation bubble. The Baldwin-Lomax model is used outside 

the separation bubble and the edge of the separation region "qg' is treated as a wall 

boundary. Thus, the q in equations 9. 11. 12 and 13 is replaced by "q-qsii. 

For high Reynolds number flows, Goldberg and Chakravarthy16 show that the 

viscosity in the separation regions can be evaluated as 

Ft .m = Ptlm,,,= 

C1 =0.353. C2=0.188.9=0.5. C, =0.7  

In the separation layer, equation (16) is used up to qcr , the smallest value of q at which 

values from equation (20) and Baldwin-I,om,zu model are equal. Beyond qcr. the 

Baldwin-Lomax model is used. 

3.4 Mixing Length Model (ML) 

This is an algebraic eddy-viscosity turbulence model which is based on the 

Prandtl hypothesis. The turbulence viscosity is evaluated as 

1 1  



pT = p 2  14 

where L is the turbulence length scale, 

L = 0.1 lqc 

qc = 172 - ql 
where at q 1 

u -u, =o. 1 u,-u, 

and at q2 

u-u, 
u,-u, =o. 9 

where U = &u + eyv + &w 

is the contravarient velocity component in the streamwise directions, U oo is the 

external flow velocity and Uo is the jet centerline velocity. 

3.5 ComDressibilitv-Corrected Mixing Length Model IML-CCL. 

I t  is well known that lurbulent mixing rates are reduced for supersonic flows in 

comparison to subsonic flows. Chuech el. al. l7 introduced a compressibility 

corrections factor and used it to modify the turbulent viscosity: 

pt = KpL 101 (24)  

where k 

= 1.0 Mc < 0.55 
= 2.03 - 1.87Mc for 0.55 s Mc 5: 0.95 
= 0.25 MC > 0.95 

where Mc is the connective Mach number of the mixing layer. 

4. Computational Met hods 

The three computational schemes presenled in this report are basically 

implicit. upwind, and constructed using a finite volume melhod. The diffusion terms 
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are centrally differenced and the inviscid flux terms are upwind differenced in these 

schemes. Associating the subscripts i,kj with 5. q, directions, a numerical 

approximation to Eq. (1) may be written in the following form: 

n+l n+l  n+ l  n+l  n + l  n + l  

I+-,k.] I---.k.j i .k+-- . j  i ,k-- , j  i ,k,]+-, 1.k.j---. 
2 2 2 2 2 2 

(25) 
(Gi ,k , j ) t  + E  1 -E 1 + F  1 -F  1 +G 1 -G * =o 

The fluxes at (n + 1 t h e  iteration) are linearized as 

n 
n + l  - n  aE; 

F = F  +-AQ aQ 

n + ~  - n  
6 =G +- A Q  

aQ 

Then, equation (25) is written as, 

E 1  n + l  I + -. k.] -En+: I - --.k.j ={E+(Q-)+E-(Q+)r . 
2 2 

- P+(Q-)+E-(Q+)[ i + - - .  2 1 k.j  

/ J i+L,  k . j  
2 

*J 

I 
2 

--.k.j 

1 3  
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In the present code, two flux-splitting schemes are used to construct the convective flux 

terms in equation (26). 

The variables Q+, Q- are defined by an upwind biased one parameter 

family 

These variables can be either the conservative or primitive variables. Also. Q+ and 9- 

represent the right and left variables. respectively. in reference to the cell face. 

where 

A g Q i . k . j =  Q i + l . k . j -  Q1.k.j. A { Q l . k . j = Q l . k . j -  Q i - 1 . k . j  

$ = O  first order fully upwind 

% = - I  

$=  1 
second order fully upwind 

third order biased upwind 
@ =  1 

However, to ensure monotonic interpolation for the third order interpolation in the 

vicinity of a shock, a min mod limiter is used as follows: 

V Q  = min mod (VQ, bAQ) 

A Q  = min mod (AQ. bVQ) 

1 4  

3-kg 
1-kg 

where b is a compression parameter, b = - 



It should be mentioned that the splitting procedures are only used for the 

inviscid convection parts of the flux vectors (E= and G) . A second order, central 

difference is used to represent the dinusion (viscous) terms. 

C1=(JZ)*.1-V2(k + 
2 

At=(JZ) I - -  

2 

+ - \  
B ~ = J  1 +(JSJ 1 

3 1 + -  1 - -  
2 2 

1 
1 + -  

2 

cg =(Ji) 

1 5  



f f f  
Ji 9 Jz v 53 9 vi and v 2  are completely described in Ref ( 1). 

The implicit upwind/relaxation algorithm of Newsome et. al.38 is used to solve 

the governing equations. This can be achieved through a series of alternative sweeps in 
n + l  

the streamwise direction. For a forward sweep. - 1,k.j  is known and AQi + 1.k.j is set 

Finally, equations (29) are approximately factored and can be written in the 

following compact form: 

where, 

Vol L=- 
At + B6 

4.1 van Leer flux vector-s~littinl~ scheme 

The first of the two schemes is the van Leers flux-vector-splitting method. The inviscid 

terms of the flux vectors (E, F and C )  are split according to their contravariant Mach 

number. - - - 
U V W ( M6, M, and Mg), defined as Mg. = -. M, = - and M5 = - a a a (3 11 

where 
- u =(sxu + s,v + s,w) / s  

V = ( R ~ U  + R,V + R,W)/R 

W = (T,U + T,V + T,W) T 

2 2 2 2  
s =sx+s,+s, 

! 

2 2 2 2  2 2 2 2  
T =Tx +Ty +T, R = R , + R , + R ,  
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As an example, for supersonfc flows in the x direction 

E =E,  and E =o. for 
+ - 

Mg >1 

+ - 
Mg < - 1  E =o. and E =E.  for 

and for subsonic flows, -1 e Mg < 1 

where 

oz f 
E,,, =_+pa Mg It 1 / 4  

7 - u  + v  + w  
2 l Y  

t 

4.2 Roe 's flux-diuerence -splitling scheme 

The second scheme is the Roe's flux-dmerence-splitting method9. which solves the 

approximate Riemann problem. For example, the interface flux in the streamwise 

direction is evaluated as. 
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where QL (8-) and QR (Q+) are either primitive or conservative variables to the left and 

the right of the cell faces, and A is the Roe-averaged flux Jacobian matrix: 

The last term in equation (34) I A I (QR-QL) is defined as: 

lAl(QR - QL) = 

- 
a4 
ila, + k,a5 + a6 
iia, + kya5 + a7 
wa4 + k,a5 + a, 

Ha, + a5ii + a,ii + a7v + a,E - 3 - 2  

- 

Also, p , G , w  and H are evaluated using formulas similar to eq. (36) and 

2 2 2 
2 il + v  + w  

2 
T: = ( y -  1)H- 

(35) 

where 

1 

221 
a2 = -KIG + ~ ( A P  + pc A ii) 

1 

2c 
a3 = ~ K l 6  - d(AP - pC A G) 

a4 = a1 -I- a2 + a3 

a5 = C(a2 - a,) 

a,=KI$l~(Au-k, AE) 
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= Klf l  (Av - k, A Ti) 

a,=KIfiIj,(Aw-k,AE) 

and 

k, .t k, + k, 
J 

K =  

For fully supersonic flow, the information (disturbance) can only travel in the flow 

direction according to equation (34) 

65(k) Backward difference 

where Gs is the average Mach number evaluated using the Roe-averaged method. The 

same result is achieved by setting the state variables at the i + 1 and i + 2 planes to be 

equal to the ones at the J-plane. 

Q+2=Qi+  1 = 8 i  Ms >1 (40) 

For a large number of supersonic/subsonic mixing flow problems. the 

downstream influence (contributed from the subsonic regions) can be neglected when 

compared with the upstream effect. For these cases, equation (18) can even be used in 

the subsonic regions to obtain an accurate solution. 

With this approach, a simple modification to the Navier-Stokes solvers can be 

made and a wide range of problems can be simulated with a single sweep. This approach 

does not require any changes in the governing equations restrictions on the mean 

values of the streamwise velocity. 
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For a time dependent solution, either the flux-vector-splitting or the flux- 

dmerence-splitting scheme is used in all three computational directions. However, 

these schemes are only used in q and t directions to obtain a space marching solution. 

In this case, either a PNS formulation or modified Roe's scheme is used to calculate the 

fluxes in the €, direction. 

With alternate loward and backward relaxation sweeps, a time-dependent 

solution can be obtained for general flow problems. A one-sweep solution can be 

obtained for supersonic/subsonic mixing problems using either the PNS formulation 

or the modified Roe's scheme. In these procedures, a local time-like iteration is used 

until the residual at the local plane is reduced four orders of magnitude. Space 

marching solutions require much less conipu t ational time than fully time-dependent 

solutions, and these can also be used as initial conditions to reduce the computational 

effort required by time-dependent solutions. 

5. Adaptive Grid Technique 

In the present report. the adaptive grid technique introduced by Pao and Abdol- 

Hamid5 is used to analyze the aerodynamic characteristics of shock containing single 

jets. This strategy is based upon the monitoring surface and equidistribution concept 

by E i ~ e m a n ~ ~ - ~ l .  Flow variables are used as the monitoring functions for grid 

adaptation in the computational domain of interest. Grid density is governed by the 

geometric properties of the monitoring funclions. In lhis melhod. a template grid is 

first generated by a geometrical function which concentrates the grid points to a 

circular zone surrounding the jet plume while leaving an adequate number of grid 

points in the farfield computational domain. For the jet exit plane, this initial grid is 

adapted to axial velocity (representative of the shear layer) and the pressure 

(representative of the shock localion). Adaptive grid for subsequent axial planes are 

generated by using the adapted grid in the previous plane as its template. 
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6. Boundaw Conditions 

6.1 Multiblock/Multizone Methodology 

The present mulliblock/multizone strategy allows a great deal of topological 

flexibility. As long as there is no change in grid topology (polar or Cartesian) or 

distribution (fine or coarse), additional blocks or zones are not necessary when the 

boundary condition changes along a block face. Each of the six block faces can have 

any combination of boundary conditions. Boundary conditions can be either a direct 

communication at  the block interface or a regular boundary condition (idlow. 

outflow. reflection, symmetry wall or extrapolation). With this flexibility, the solver 

requires fewer blocks and zones which significantly reduces the overhead required for 

the communication between block/zone interfaces. 

A typical computational domain (figure 1) may contain zones. blocks and 

partitions. The relations between zones, blocks and partitions are defined as follows: 

Zone I&): parts of the computational domain organized linearly along the i- 

direction. Each zone may contain niultiple blocks. Each block within a zone can 

interface with blocks in adjacent zones where mived boundary conditions are allowed. 

Communications at  the zone level are restricted to face 5 (izm = 1) which communicates 

with face 6 of zone h - 1 ,  and face 6 (i=i=imaxz,,) which communicates with face 5 of 

the next zone %+I. Blocks within a zone can terminate only at face 6 of the zone. Face 

5 of zone 1 and face 6 of the last mne of the computational domain can have any 

combination of the regular boundary conditions. 

Block (Bn): subsection of Zm, can start at any i-location (IMINZm e iBn < 

IMAXzm) with different regular boundary conditions and interface with any other 

block (if needed) at faces 1.2.3 and 4. Face 5 and 6 can coniniunicate with another from 

zone h - 1  and %+I with any combination of regular boundary conditions. Face 1.2.3. 

and 4 are defined as follows: for i = IBn, imaxzm 

face 1 j= jmax, k=l, kniax 
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face 1 j= jmax. k=l. kmax 

face 2 j=jmin. k=l, kmax 

face 3 k=kmin, j= 1, jmax 

face 4 k=kmax, j= 1. jmax 

The interface between blocks can be of any direction or order (coarse to fine grid). Any 

of the four faces (1 -4) in one block can communicate with any number of blocks and 

different faces in any order. With this flexibility, there is no need to break a block into 

a number of blocks on account of communications with more than one block or mixed 

boundary conditions on a block interface. The only computational effort is setting the 

correct boundary conditions for each of the four faces of a block. 

Partition (PI): subsection of a block within a zone. which can start any i- 

location. The partition allows the user to change boundary conditions without adding 

an extra zone. Any of the four faces boundary conditions can be changed and a 

turbulent or laminar solution can be selected for each partition. 

Different examples of using the present multiblock/multizone methodology has been 

mentioned in Section 1. This method will simplify grid generation by reducing the 

number of blocks and zones needed to describe a complex computational domain and by 

giving the users more flexibility in breaking the computational domain into simple 

sections. 

6.2 ReEular Boundam Conditions. 

Regular boundary conditions are idlow. outflow. reflection, symmetry, wall 

and extrapolation. In the following equations. a boundary point is denoted by "q". and 

the factitious image point is denoted by "I". Boundary points (0 are calculated as 

follows: 

a) Inflow/Outflow Boundary 

The treatment of this boundary is based on Rieniann invariants for a one- 

dimensional flow. Riemann Invariants can be defined as 
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2 p=v +- 
Y-1 

- -  
a, 11- 

2 
Y - 1  

- -  
Q=V,T- a, 

where, + and - are the increasing and decreasing direction side 

of the q-direction, and side of the h-direction.. 

V,, = k,u + k y V  + k,w 

then, there follows: 

V, = d ( P + S )  2 

The primitive flow variables can be written in a general fonn: 

where c 1.122. c3 are given dflerent values in various cases. 

1) For inflow boundary conditions where V,, < 0. 
- -  - c3 =IV, - V,l 

If the constant entropy restriction is applied, then 

1 
2 s  2 

- c ] = [ y ]  .c2 - =- a R  
Y 

otherwise, if the constant pressure restriction is applied, then 

2) For outflow boundary conditions where , VR 7 0. 
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If the constant entropy restriction is applied, then 

constant pressure restrictlon 

b) Reflection Boundarv Condition 

There are three cases: 

u-reflection 

uv-reflection (quarter-plane polar grid) 

4 svm metrv Boundarv Condilion 

T 
{Pr. U r *  vr*wr* Pr} = {P,. uq*v,* w,. P,jT 

d) Wall Boundarv Condition 

At the wall, velocity normal to the wall surface is set to zero and no-slip conditions are 

imposed, 
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u = v = w = o  

The pressure on the wall surface is obtained by setting the pressure gradient to zero and 

adiabatic wall condition is employed for temperature. 

el Extrapolation Boundary Co ndition 

There are three options: 

zero-order 

Qf'Qq 

First-order 

Second-order 
Qf= l . q  +0.5@, - 1 

7. Numerical Results and Discussions 

In this section, some of the computational options available in the PAI33-v2 

code are used to simulate different flow problems. Three test cases, which use the 

multiblock/multizone, adaptive grid. time-dependent, space marching, parabolized 

Navier-Stokes, and turbulence model capabilities are presented. The average 

computational time on Cray-2 computer was 70 ps/grid point. The first test case is a 

group of calculations for underexpanded and overexpanded supersonic jets issued into 

still air from round, square, and elliptic noLdes using polar and Cartesian grids. The 

second case is the simulation of high pressure supersonic flow issued into still air from 

a two 5-tabs nozzles. Finally, subsonic and supersonic flows past a nonaxisymmetric 

afterbody and no/zle with either a solid simiilated plume or a supersonic jet exhaust are 

computed and compared with experimental data. 

7.1 SuDerso nic let D lume 

The present three-dimensional code is used to predict the shock-cell and flow 

characteristics of both underexpanded and overexpanded supersonic jets issued into 
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still air. The present predictions for round no;l.les are qualitatively compared with the 

experimental data of Love et. al.42 for underexpanded supersonic jets. Quantitative 

comparisons are made with the experimental data of Noruni and Seiner43 for Mach 2 

underexpanded and overexpanded supersonic jets issued from round nosrxles. The 

present space marching scheme and adaptive grid are also used to simulate a supersonic 

underexpanded jet issued from both square and elliptic nozzles. 

Since details of the initial jet profile are not available, all cases are computed 

using a top-hat profile at the jet exit. Free-stream Mach number in the ambient air is 

assumed to have a value of .05. Space marching and time-dependent solutions 

presented in this section are calculated by using the van Leer flux-vector-splitting 

sch erne. 

7.1.1 Polar Grid: Round Nozzle 

In order to evaluate the capabililies of the present code, some of the iniportant 

characteristics of mildly underexpanded supersonic je ts  are computed and compared 

with PNS predictions as well as the experimental dala of Love et. These are the 

characteristics of the first shock-cell: 

a) The location (I) of the intersection between the incident shock wave 

jet centerline or the intersection can be a Mach disk.. 

b) The location of the expansion wave rellection at 

jet boundary. W. 

Figure (2) shows a typical quarter plan polar grid used to calculate jet plume flow 

issued from a round noule. In figure (3). the computational results for L/D and W/D are 

presented as a function of pressure ratio P, / P:, , and compared with the experimental 

data of Love et. a142* The magnitude of I and W increases with increasing pressure ratio 

for all three Mach numbers. Excellent agreement is achieved between the experimental 

data and computational results. In order to obtain PNS solutions, the highest 

applicable value of CFL number is approximately 5. By using the S M S  technique. the 
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applicable values of CFL number can be as high as 30. Figure (4) shows a typical 

convergence history of the L-2 norm of the residual for S M S  and PNS solutions. I t  is 

observed in this figure that the residual dropped by 10 orders of magnitude in less than 

1 0 0  iterations for the S M S  solution. However, the PNS solution behaves similar to the 

S M S  (in the first 10 iterations), then the convergence rate deteriorates substantially. In 

most cases, SMS solutions using PAE33D-v2 take less than 80 percent of the 

computational time required by PNS to achieve a similar convergence history. For the 

free stream region surrounding a Mach 1.5 or 2.0 jet, PNS solutions were unstable for a 

CFL value higher than to a value of 2 and a Mach number less than 0.3. It is not clear 

why a converged solution for overexpanded supersonic jet cases could not be obtained 

using PNS methodology. On the other hand, converged solutions were obtained for a 

wide range of Mach numbers and pressure ratio using the SMS. It was noted that the 

PNS procedure was very sensitive to the inlet condition at the jet exit and that a large 

discontinuity always caused a departure solution. 

These results indicate that SMS is a robust scheme which gives eflicient and 

accurate solutions. These solutions can also be used as initial conditions for time- 

dependent Thin-Layer Navier-Stokes calculations which can reduce the number of 

iterations required for converged solutions37. S M S  is to be used to calculate the test 

cases described in this section (section 7). 

Figure (5) shows the periodic structure of the Mach contours for a sonic jet with 

dilferent pressure ratios up to 10 jet-radii downstream of the jet exit. Higher pressure 

ratios produced less shock cells within the same distance. The sonic flow at the exit is 

expanded to a supersonic flow with a higher Mach number. The number of shock-cells 

decreases from 6 to 3 and the fully expanded Mach number increases from 1.1 to 2.0 as 

static pressure ratio is increased from 1.2 to 2.0. 

2 7  



7.1.1.1 UnderexDanded Mach 2.0 Jet: PjjP, = 1.45 

The space marching prediction using the modified Roe's scheme in the 

streamwise direction is compared with a fully time-dependent solution in this section. 

The grid size for this case was 15 1x1 1x4 1 and the time-dependent solution converged 

after 500 global iterations, which is approximately 2 100 CPU Secs. On the other hand, 

the space marching solution took less than 100 CPU Secs on the Cray 2. Figure (6) 

shows the centerline pressure variation predictions using both time-dependent and 

space marching methods. The space marching technique gives a solution comparable 

to the time-dependent solution in less than 5 percent of the computer time. All the first 

and second shock-cell characteristics (spacing and strength) are captured with the space 

marching scheme. 

Figure (7) shows a comparison of the predicted results using mixing length (ML) 

and mixing length with compressibility correction factor (ML-CC) turbulence models 

(SMS solution) with the measured streamwise pressure variation along the jet center 

line. The jet was operated at a pressure ratio of 1.45 corresponding to a fully expanded 

Mach number of 2.24 and was issued from convergent-divergent nozle with a design 

Mach number of 2. 

The measured static pressure distributions indicate a decay in the shock 

structure strength which is due to the interaction of shocks wilh the growing mixing 

layer. The ML turbulence model signiricantly overpredicts the shock-cell decay. It was 

expected that the incompressible turbulence model would not give a good prediction for 

compressible flow problems. The predicted result improved with the use of the 

compressibility correction factor of Chuech et. al. 17. The computational result agrees 

reasonably well with the experimental data up to 30 jet-radii downstream of the jet- 

exit. 
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7.1.1.2 Ovemanded Mach 2 Jet: I?i/P. = .75 

Figure (8) shows the present code prediction capability for an overexpanded flow 

case and for MLCC and ML turbulent solutions, respectively. The jet was operated at a 

pressure ratio of 0.75 and was issued from a convergent-divergent no7zle with a design 

Mach number of 2. 

The code predicts the irregular centerline pressure data with remarkable 

precision. Both turbulence models give very similar pressure distributions and agree 

well with available data. This suggests that the mixing layer boundary does not reach 

the jet centerline. The code shows a sharp compression shock at the exit ofjet as 

expected for this kind of flow. This increases the pressure downstream of the shock as 

shown in figure (8). 

7.1.2 Cartes ian Grid 

A non-circular jet plume at off-design operating conditions (over- or 

underexpanded) may contain a very complex internal shock cell structure and the shear 

layer cross section goes through a complex sequence of shape transformations in the 

developing region of the jet plume. In this section, solutions obtained by using both 

k e d  and adapted grids for underexpanded supersonic jet issued from round, square, 

and elliptic nozzles are presented. Cartesian topology is used for the grids because it 

offers excellent grid mobility for the adaptive grid cases. Calculations are made using 

the space marching scheme in the stream wise direction and van Leer flux-vector- 

splitting scheme in the crossplane directions with laniinar flow assumption. Initial 

shear layer thickness is assumed to be .05 and . 1  of the jet-radii for adaptive and fixed 

grid respectively. The test case is for an underexpanded supersonic jet with design Mach 

number of 2 and pressure ratio of 1.45. 

7.1.2.1 Pound Nomle 

With only 36x36 grid points, the adaptive grid scheme has sufficient grid density 

to represent the circular nozzle shear layer as shown in figure (9). As the shear layer 
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and shock front change their location, the grid will follow these changes. Fixed and 

adaptive grids were used for single and multiblock solutions of an underexpanded 

supersonic jet (Pj/Pa = 1.45). Figure (10) shows the centerline pressure distribution 

using a single-block solution with fixed and adaptive grid. The f i e d  grid solution is 

exactly the same as the results presented earlier using a polar grid topology. A 

secondary pressure rise at z/re = 4 appears stronger in the adaptive grid calculation 

(agrees with experimental data), and there is a slight upstream shift of the shock-cell 

position from the fixed to the adapted grid results. In general, the adapted grid solution 

agrees better with the experimental data. Figure (1 1) shows how well the adapted grid 

follows the shear layer and detected shock front locations as clearly described by the 

density contours shown in figure (12). 

As can be noted in figure (9). Cartesian grid topology wastes a large number of 

grid points in the farfield region. To eliminate this problem, a multiblock strategy can 

be used in the farfield region as shown in figure (13). In this figure, the computational 

domain is divided into three blocks with the adaptive grid procedure applied only to the 

first block (with jet plume). Block dimensions are 27x27. 4x13. and 4x18 which results 

in about 33 percent less grid points and. in turn, causes a large reduction in 

computational time when compared to the single block strategy. As shown in figure 

(14). the three-block solution. which uses less computational resources (memory and 

time). agrees well with the result produced using the single block strateu. 

7.1.2.2 Square and Elliptical Nozzle 

Figure (15) shows the initial adaptive grids generated for square and elliptic 

no7zle calculations. In the case of the square no;.zle. the X-2 and Y-2 plane have 

similar shock-cell characteristics (density contours: figure (1611, to those presented for 

the round nozle in figure (12). However, the cross section plane goes through a very 

complex transformation as the jet changes shape from square to round to diamond 

shape3. Similar observations are made by Anderson and Barber23 for a supersonic 
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rectangular nozzle. Figure (17) shows the comparison between the adaptive and f i e d  

grid predictions of the centerline pressure. The shock-cell spacing and strength are 

very similar to the round no/zle results. Again. the secondary pressure strength at X/re 

= 4 is much larger for the adaptive grid prediction than the fixed grid. In addition, there 

is another secondary pressure peak shown at Xre = 17 for the adaptive grid. 

Figure (18) shows the density contours predictions for 2: 1 elliptic noizle. The 

shock-cell structure is very different from those presented for either the square or 

round nozzle. First, the minor axis grows each time that the shock reflected from the 

jet centerline intersects with the shear layer. At the same time, the major axis decays 

as the jet cross section transforms into a circular shape. Second, the shock front on the 

major axis plane (X-2) is much stronger than the ones on the minor axis plane (Y-2). 

Finally, the jet produces two different shock front structures associated with different 

scales (strength and space). It is believed that these structures have different centers 

which are not always located on the jet centerline (Z-axis). Figure (191 shows the 

centerline pressure distribution using fixed and adaptive grid solutions. The elliptic 

nozzle produces more shock-cells than either the round or square jet for a similar 

distance. In addition, the shock-cells have different centerline pressure characteristics 

(compare figure (19) with figures (10) and 17)). The adaptive grid solution predicts a 

large pressure peak for the first shock-cell whereas the fixed grid solution did not. 

7.2 Supessonic No zzle 

In this section, the multiblock and partitioning options of PAI33D-v2 code are utilized 

to simulate a group of underexpanded supersonic jet flow which include both internal 

and external flow regions for a special family of jet nozzles. The examples are designed 

to show the flexibility of the PAE33D-v2 code in handling mixed boundary conditions 

over a block interface. The nozzle configuration can be described as  a circular pipe 

section followed by five equally spaced tabs. Each tab is simply an extension of an arc 

segment of the circular pipe for a certain length in the downstream direction. Each arc 
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segment, representing the width of the tab. is 1 / 10 of the full circle. Two nozzle 

configurations are chosen. In the first case. the tabs are infinite in length in a direction 

parallel to the pipe centerline. (fig. 20). This nozzle will be referred to as the "infinite 

tab nozzle". Essentially, the entire flow field can be considered as internal to the n07Zk 

although there is venting through the spaces between the tabs. In the second case, the 

tabs are chosen to be one pipe diameter i length. (Fig. 2 1). The nozzle exit plane is 

defined as the streamwise location at the end of the tabs. This configuration is called 

the "short tab nozzle". The flow region upstream of the nozzle exit plane is considered 

as the no72112 internal flow, and the flow downstream ofthe same plane is a free jet with 

a shear layer developing between the jet plume and the ambient free stream. Each of the 

two cases has an internal flow Mach number of 2 with an internal to external pressure 

ratio of 1.45 at the nozzle exit. The cross sectional computational domain of the nozzle 

requires the extensive use of multiblock strategy. Most CFD codes with multiblock 

capability do not have the capability of handling mixed interface condition at a block 

boundary. Therefore, these codes would have to divide this computational domain into 

at least 15 blocks as shown in figure (22) with the number or blocks increasing with the 

number of tabs. However, PAE33D-v2 code needs to use only 2 blocks to simulate this 

test case for any number of tabs. For the short tab n o d e  test case. most CFD codes need 

another block to simulate the flow downstream of the nozzle exit. Using the partition 

option. the PAJ33D-v2 code does not have any need for an extra block or zone. With this 

flexibility, more than a 20 percent reduction in grid points is achieved: the overhead 

due to interpolation between block boundaries is avoided: and the convergence rate of 

the solution is increased. 

Figure (23) shows the Mach contours at different axial locations for the infinite 

tab nozzle test case. Initially, the flow escapes through the gaps between the 5 tabs and 

then the jet cross section changes into a pentagon shape connected at the midpoint of 

each tab. For, the short tab nozzle jet case (figure 24). the flow initially. goes through 
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the same transformation. but. the cross section changes its shape back to a circular one. 

Wlezien and K i b e n ~ ~ ~  did a series or experinients for 1.2.4. and 8 tabs 

nonaxisynimetric nozzle-free jet. Their results indicate that multiple-tab nozzle 

plumes spread faster and have a lower core Mach number than the free-jet case for 

circular no7zles without tabs. The present predictions produce similar results to those 

reported in Ref. 1441. Figures (25) and (26) show the coniparisons between centerline 

Mach number and pressure respectively for free-jet. nozzle-free jet, and nozzle test 

cases. The short tab nozzle case produces more shock-cells, decays faster. and has lower 

core Mach number than the lree-jet described earlier in section 7 of this report. 

However, the infinite tab nomle test case decays much fasler, and has the lowest core 

Mach number of all cases considered. 

7.3 Nonaxisymmetric Afterbodv 

In this section, the thin-layer Navier-Stokes equations are solved to simulate 

subsonic (M = 0.8) and supersonic (M = 1.2) flow cases over the nonaxisymmetric 

afterbody described in Ref. [45]. The third-order flux-difference splitting scheme of Roe 

is used to discretize the governing equations. In the subsonic case. jet-exhaust is 

included to utilize as an example to demonstrate the multiblock/multizone and 

partitioning options in the PAB3D-v2 code. The supersonic test case compares the 

performance of three diITerent turbulence models in simulating a separated flow region. 

First, for an external flow Mach number of 0.8 and the jet operating at Mach 2, a 

coarse grid topology is used for the calculation (figure (27)). A laminar flow assumption 

is made for the regions upstream of the body and downstream of the jet exit. A turbulent 

flow calculation using the Baldwin-Lomax turbulence model (Ref. (10)) is made in the 

region over the body. Three different multiblock/multizone configurations ( 12-2B, 22- 

2B. 22-3B) are used to grid this problem. The first configuration has one mne with two 

blocks. The first block has 64x32~10 grid points to represent the full external flow 

region with three partitions ending at i = 10. 50. and 64. Tlie second block simulates the 
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jet-exhaust region with 14x10~2 1 grid points. In the second configuration, two-zone 

block topology is used. The first zone has one block (50x10~32) with two partitions 

ending at i = 10 and 50. The second mne has one block (14x10~52) which represents the 

internal and external flow regions downstream of the jet exit. The last configuration is 

similar to the second one except that the second zone splits into two blocks: one for the 

external flow region (14x10~32) and the other for the jet-exit region (14x10~21). It 

should be mentioned that CFD codes which permit only one boundary condition per 

block interface would require a minimum of 4 blocks to siniulate the present test case. 

With the PAJ33D-v2 flexibility in dealing with mixed boundary conditions, the present 

case can be solved with as little as two blocks. 

Figure (28) shows the Mach contour predictions using the 12-2B topology (the 

other two topologies give exactly the same results). The smooth transition of the 

density contours between zone 1 and zone 2 is apparent in this figure. This transition is 

only possible because of the fully consexvative nature of the zonal/block boundary 

scheme. The afterbody pressure distributions computed with the three different 

multiblock/multii.one topologies are compared with experimental data in figure (29). 

All three calculations give exactly the satne predictions (in less than 50 global 

iterations) and agree well with the experimental data. 

The supersonic Mach 1.2 case is computed using three diflerent turbulence 

models with a rectangular solid sting replacing the jet-exhaust. The three turbulence 

models are: the Baldwin-LomaxlO model, the Johnson and King model12-14 as 

extended to three-dimensional flows by Abid13 and Abid. et. al. 14, and the Goldberg 

model 5-1 6. Calculations are made with a single-zone/single-block topology with fine 

grid distribution ( 129x66~33). 

The afterbody pressure distributions coniputed with the three different 

turbulence models (Baldwin-Lomax. Johnson-King, and Coldberg) are compared with 
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experimental data in figure (30). All three turbulence models predict the shock at 

approximately the correct axial location. The 'Johnson-King and Coldberg models, 

however. give shock locations slightly upstream which agree better with the data. 

Both the Johnson-King and Goldberg models give a much better prediction of the 

"pressure plateau" in the overcompression region. The Baldwin-Lomax model fails to 

predict the "pressure plateau". The Johnson-King model is presently the best in 

predicting the plateau. 

While the Johnson-King model may be slightly better in predicting the "pressure 

plateau," it had to be calibrated for this flow regime. For flows with massive 

separation, Johnson2 noticed that very large values of the ratio of the nonequilibrium 

maximum shear stresses were generated using the Johnson-King model. He suggested 

limiting this ratio should be limited to a maximum value of 3.0. For the present case, 

Abdol-Hamid and Compton4 found that (z e 2.5 produces one of the best calculations 

when compared with the experimental data. Abid et. al. l6 used a limiting value of 4.0 

in predicting the pressure distributions for the ONERA M 6  wing. For the present 

calculation, it was noted (not shown) that the convergence with Q = 2.5 is slower than 

using the Baldwin-Lomax model. Again, Abid et. al. 

advantage of both the Goldberg and Baldwin-Lomax models is that they do not need to 

be calibrated for this flow. 

made similar observations. An 

8. S u m m n ~  

The PAI33D-v2 code and its application to a variety of aerodynamic test 

problems have been discussed in this technical report. The code solves the three- 

dimensional simplified Navier-Stokes equations using the strong conservation form of 

the flntte volume formulations. It uses two different flux-splitting schemes: van Leer's 

flux-vector-splitting and Roe's flux-difference-splitting. Also, the modified Roe's 

scheme is used to euiciently solve the governing equations in the steady state mode 

with a single global sweep. Several of the PAl33D-v2 options (mulliblock/multizone, 
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adaptive grid, different turbulence models, and time-dependent and space marching 

numerical schemes) were applied to three diflerent flow examples. 

For the supersonic jet plume problem. the code uses its multiblock. adaptive 

grid. time-dependent and space marching strategies to predict the shock-cell structure 

for mildly underexpanded and overexpanded supersonic jet plumes. The jet is issued 

from round, square and 2: 1 elliptic nozzles. The multiblock option reduces the 

computational time by at least 20 percent. The space marching strategy predicts exactly 

the shock-cell structure and when compared to a fully time-dependent strategy, 

requires less than 5 percent of the computational time to get a converged solution. The 

adaptive grid option enhances the prediction of the flow solver as it compares better 

with the experimental data. 

For the vented supersonic nozzle test cases, the PAB3D-v2 code provides a very 

enicient multiblock interrace strategy to solve [he 5-tabs nozzle. Many CFD codes 

require a great number of blocks per tab to solve these kinds of problems with mixed 

boundaries. Only two blocks are required by PAE33D-v2 to solve this problem, 

regardless of the number of tabs and length. 

The time-dependent option was utilized to simulate the flowfields around a 

nonaxisymmetric afterbody with external Mach numbers of0.8 and 1.2. For the 0.8 

Mach number case, the jet-exhaust was simulated with different multiblock/multizone 

topologies. The PAD3L)-v2 code requires only two blocks to solve the jet-exhaust 

problem while many CFD codes need to break the flowfield into at least four blocks. 

Three different turbulence models were used and evaluated in solving the Mach 1.2 test 

case. The results of this study show that the Johnson-King and Goldberg turbulence 

models give a much better prediction of the shock location and pressure plateau in the 

separated region than the Baldwin-Lomax model. 

In general. the PAB3D-v2 code can be used to simulate flowfields for complex 

aerodynamic configurations. Obviously. a detailed validation study using the several 

3 6  



options in the code needs to be made. However, there is still a need for more options and 

code upgrading. Upgrading the turbulence models from the algebraic level to the two- 

equation, multi-scale or algebraic Reynolds Stress level is needed to deal with 3D 

mixing and general aircraft configurations. Time-dependent adaptive grid 

methodology is needed for simulating vortical aspects of 3D mixing. Lastly, finite-rate 

chemistry with multiple species and multiphase solvers needs to be added to the code 

for solving jet plume and combustion problems. 
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